首页> 外文OA文献 >Supersonic flow onto solid wedges, multidimensional shock waves and free boundary problems
【2h】

Supersonic flow onto solid wedges, multidimensional shock waves and free boundary problems

机译:超音速流到固体楔块上,多维冲击波和自由边界问题

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

When an upstream steady uniform supersonic flow impinges onto a symmetric straight-sided wedge, governed by the Euler equations, there are two possible steady oblique shock configurations if the wedge angle is less than the detachment angle—the steady weak shock with supersonic or subsonic downstream flow (determined by the wedge angle that is less than or greater than the sonic angle) and the steady strong shock with subsonic downstream flow, both of which satisfy the entropy condition. The fundamental issue—whether one or both of the steady weak and strong shocks are physically admissible solutions—has been vigorously debated over the past eight decades. In this paper, we survey some recent developments on the stability analysis of the steady shock solutions in both the steady and dynamic regimes. For the static stability, we first show how the stability problem can be formulated as an initial-boundary value type problem and then reformulate it into a free boundary problem when the perturbation of both the upstream steady supersonic flow and the wedge boundary are suitably regular and small, and we finally present some recent results on the static stability of the steady supersonic and transonic shocks. For the dynamic stability for potential flow, we first show how the stability problem can be formulated as an initial-boundary value problem and then use the self-similarity of the problem to reduce it into a boundary value problem and further reformulate it into a free boundary problem, and we finally survey some recent developments in solving this free boundary problem for the existence of the Prandtl-Meyer configurations that tend to the steady weak supersonic or transonic oblique shock solutions as time goes to infinity. Some further developments and mathematical challenges in this direction are also discussed.
机译:当上游稳定的均匀超音速流撞击到对称的直边楔形上(由欧拉方程控制)时,如果楔形角小于分离角,则存在两种可能的稳定斜向激波配置-下游为超音速或亚超音速的稳定弱冲击流(由小于或大于声波角的楔角确定)和亚音速下游流产生的稳定强冲击,两者都满足熵条件。在过去的八十年中,一直在激烈地争论着这个基本问题,无论是持续的弱冲击还是强冲击都是物理上可接受的解决方案。在本文中,我们调查了在稳态和动态状态下稳态冲击解的稳定性分析的一些最新进展。对于静态稳定性,我们首先说明如何将稳定性问题公式化为初始边界值类型问题,然后在上游稳定超音速流和楔形边界的扰动都适当地规则且小,最后我们给出了有关稳定的超音速和跨音速冲击的静态稳定性的一些最新结果。对于势流的动态稳定性,我们首先说明如何将稳定性问题表达为初始边界值问题,然后使用问题的自相似性将其简化为边界值问题,然后将其重新表示为自由值。边界问题,最后我们调查了解决该自由边界问题的最新进展,以了解存在的Prandtl-Meyer构造,随着时间的流逝,它们趋向于稳定的弱超音速或跨音速斜向激波解。还讨论了此方向上的一些进一步发展和数学挑战。

著录项

  • 作者

    Chen, Gui-Qiang;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号